Article
References
- 1. Bicocchi MP, Migeon BR, Pasino M, et al. Familial nonrandom inactivation linked to the X inactivation centre in heterozygotes manifesting haemophilia A. Eur J Hum Genet 2005; 13(5):635–40. doi: https://doi.org/10.1038/sj.ejhg.5201386.
- 2. Shoukat HMH, Ghous G, Tarar ZI, Shoukat MM, Ajmal N. Skewed inactivation of X chromosome: a cause of hemophilia manifestation in carrier females. Cureus 2020; 12(10): e11216. doi: https://doi.org/10.7759/cureus.11216.
- 3. van Galen KPM, d’Oiron R, James P, et al. A new hemophilia carrier nomenclature to define hemophilia in women and girls: communication from the SSC of the ISTH. J Thromb Haemost 2021; 19(8): 1883–7. doi: https://doi.org/10.1111/jth.15397.
- 4. Borhany M, Pahore Z, ul Qadr Z, et al. Bleeding disorders in the tribe: result of consanguineous in breeding. Orphaned J Rare Dis 2010; 5: 23. doi: https://doi.org/10.1186/1750-1172-5-23.
- 5. Dutta A, Dutta TS, Dey P. Clinical profile of haemophilia patients of upper Assam – a hospital-based study. J Evol Med Dent Sci 2017; 6(37): 2990–4.
- 6. Iorio A, Stonebraker JS, Chambost H, et al. Establishing the prevalence and prevalence at birth of hemophilia in males: a meta-analytic approach using national registries. Ann Intern Med 2019; 171(8): 540–6. doi: https://doi.org/10.7326/M19-1208.
- 7. World Federation of Hemophilia. Report on the Annual Global Survey 2020. October 2021. Montréal, Québec: WFH. Available from https://wfh.org/data-collection/#ags (accessed 4 March 2022).
- 8. Ghosh K, Shukla R. Future of haemophilia research in India. Indian J Hematol Blood Transfus 2020; 36(1): 1–2. doi: https://doi.org/10.1007/s12288-017-0872-2.
- 9. The GUaRDIAN Consortium, Sivasubbu S, Scaria V. Genomics of rare genetic diseases—experiences from India. Hum Genomics 2019; 13: 52. doi: https://doi.org/10.1186/s40246-019-0215-5.
- 10. Van den Berg HM, de Groot PHG, Fischer K. Phenotypic heterogeneity in severe hemophilia. J Thromb Haemost 2007; 5(1): 151–156. doi: https://doi.org/10.1111/j.1538-7836.2007.02503.x.
- 11. Valentino LA, Hakobyan N, Rodriguez N, Hoots WK. Pathogenesis of haemophilic synovitis: experimental studies on blood-induced joint damage. Haemophilia 2007; 13(3): 10–3. doi: https://doi.org/10.1111/j.1365-2516.2007.01534.x.
- 12. Roosendaal G, Van Rinsum AC, Vianen ME, Van den Berg HM, Lafeber FP, Bijlsma JW. Haemophilic arthropathy resembles degenerative rather than inflammatory joint disease. Histopathology 1999; 34(2): 144–53. doi: https://doi.org/10.1046/j.1365-2559.1999.00608.x.
- 13. Guha A, Rai A, Nandy A, et al. Joint scores in hemophilic arthropathy in children: Developing country perspectives. Eur J Rheumatol 2020; 7(1): 26–30. doi: https://doi.org/10.5152/eurjrheum.2019.19040.
- 14. Gualtierotti R, Solimeno LP, Peyvandi F. Hemophilic arthropathy: current knowledge and future perspectives. JThromb Haemost 2021; 19(9): 2112–21. doi: https://doi.org/10.1111/jth.15444.
- 15. Seuser A, Khayat CD, Negrier C, Sabbour A, Heijnen L. Evaluation of early musculoskeletal disease in patients with haemophilia: results from an expert consensus. Blood Coagul Fibrinolysis 2018; 29(6): 509–520. doi: https://doi.org/10.1097/MBC.0000000000000767.
- 16. Srivastava A, Santagostino E, Dougall A, et al. WFH Guidelines for the Management of Hemophilia, 3rd edition. Haemophilia 2020; 26(6): 1–158. doi: https://doi.org/10.1111/hae.14046.
- 17. Di Minno MND, Pasta G, Airaldi S, Zaottini F, Storino A, Cimino E, et al. Ultrasound for early detection of joint disease in patients with hemophilic arthropathy. J Clin Med 2017; 6(8): 77. doi: https://doi.org/10.3390/jcm6080077.
- 18. Choudhary R, Sharma P, Nigam RK, Malik R. Functional Independence Score in haemophilia: A hospital based observational study in a tertiary care center in Central India. J Evid Based Med Healthc 2019; 6(41): 2702–5. doi: https://doi.org/10.18410/jebmh/2019/560.
- 19. Kavaklı K, Özbek SS, Antmen AB, et al. Impact of the HEAD-US scoring system for observing the protective effect of prophylaxis in hemophilia patients: A prospective, multicenter, observational study. Turkish J Hematol 2021; 38(2): 101–110. doi: https://doi.org/10.4274/tjh.galenos.2021.2020.0717.
- 20. Knobe K, Berntorp E. Haemophilia and joint disease: pathophysiology, evaluation, and management. J Comorb 2011; 1(1): 51–59. doi: https://doi.org/10.15256/joc.2011.1.2.
- 21. Frija G, Blažić I, Frush DP, et al. How to improve access to medical imaging in low-and middle-income countries? EClinicalMedicine 2021; 38: 101034. doi: https://doi.org/10.1016/j.eclinm.2021.101034.
- 22. Payal V, Sharma P, Chhangani NP, Janu Y, Singh Y, Sharma A. Joint health status of hemophilia patients in Jodhpur region. Indian J Hematol Blood Transfus 2015; 31(3): 362–366. doi: https://doi.org/10.1007/s12288-014-0465-2.
- 23. Mishra S, Kumar S, Panwar A, et al. A clinical profile of hemophilia patients and assessment of their quality of life in Western Uttar Pradesh, India: An observational study. Med J Dr DY Patil Univ [serial online] 2016; 9(3): 320–324. Available from https://www.mjdrdypu.org/text.asp?2016/9/3/320/182501.
- 24. Jansen NWD, Roosendaal G, Lundin B, et al. The combination of the biomarkers urinary C-terminal telopeptide of type II collagen, serum cartilage oligomeric matrix protein, and serum chondroitin sulfate 846 reflects cartilage damage in hemophilic arthropathy. Arthritis Rheum 2009; 60(1): 290–8. doi: https://doi.org/10.1002/art.24184.
- 25. Stephensen D, Tait RC, Brodie N, et al. Changing patterns of bleeding in patients with severe haemophilia A. Haemophilia 2009; 15(6): 1210–4. doi: https://doi.org/10.1111/j.1365-2516.2008.01876.x.
- 26. Rodriguez-Merchan EC, Jimenez-Yuste V, Aznar JA. Joint protection in haemophilia. Haemophilia 2011; 17(2): 1–12. doi: https://doi.org/10.1111/j.1365-2516.2011.02615.x.
- 27. Valentino LA, Taylor A. Hemophilia Clinical Consults: hemophilic arthropathy, reduced bone density and preventive strategies. Clin Consult 2011; 1:1.
- 28. Centers for Disease Control and Prevention. Report on the Universal Data Collection Program. 2005. 7 (no. 1): 1–39. Available from https://www.cdc.gov/ncbddd/blooddisorders/udc/documents/report-udcprogram_may-1998-december-2004_july-2005.pdf.
- 29. Van Dijk K, Fischer K, Van Der Bom JG, Grobbee DE, Van Den Berg HM. Variability in clinical phenotype of severe haemophilia: the role of the first joint bleed. Haemophilia 2005; 11(5): 438–43. doi: https://doi.org/10.1111/j.1365-2516.2005.01124.x.
- 30. Hassan TH, Badr MA, El-Gerby KM. Correlation between musculoskeletal function and radiological joint scores in haemophilia A adolescents. Haemophilia 2011; 17(6): 920–5. doi: https://doi.org/10.1111/j.1365-2516.2011.02496.x.
- 31. Fischer K, van der Bom JG, Mauser-Bunschoten EP, et al. The effects of postponing prophylactic treatment on long-term outcome in patients with severe hemophilia. Blood 2002; 99(7): 2337–41. doi: https://doi.org/10.1182/blood.v99.7.2337.
- 32. Valentino LA. Blood-induced joint disease: the pathophysiology of hemophilic arthropathy. J Thromb Haemost 2010; 8(9): 1895–902. doi: https://doi.org/10.1111/j.1538-7836.2010.03962.x.
- 33. Tlacuilo-Parra A, Villela-Rodriguez J, Garibaldi-Covarrubias R, Soto-Padilla J, Orozco-Alcala J. Functional independence score in hemophilia: A cross-sectional study assessment of Mexican children. Pediatr Blood Cancer 2010; 54(3): 394–7. doi: https://doi.org/10.1002/pbc.22291.
- 34. Altisent C, Martorell M, Crespo A, Casas L, Torrents C, Parra R. Early prophylaxis in children with severe haemophilia A: clinical and ultrasound imaging outcomes. Haemophilia 2016; 22(2): 218–24. doi: https://doi.org/10.1111/hae.12792.