

The use of rIX-FP in patients with haemophilia B: a nurse's perspective

Kara Garner, Christine Guelcher, Debra Pollard

The management of patients with haemophilia is complex and requires lifelong care to be delivered by a specialist multidisciplinary team. Haemophilia B results from a deficiency or absence in coagulation factor IX (FIX), leading to easy bruising, and musculoskeletal and internal bleeding. For patients with severe or moderate haemophilia B, prophylaxis with standard half-life (SHL) coagulation FIX products requires frequent intravenous administration, which may negatively impact treatment adherence and increase burden of care. A recombinant fusion protein linking recombinant FIX with recombinant human albumin, rIX-FP, has an extended half-life compared with SHL rFIX, and has demonstrated a favourable safety and efficacy profile for the prevention and treatment of bleeding episodes in phase III and real-world studies of patients with severe haemophilia B. rIX-FP enables treatment to be tailored to the needs of individual patients, with dosing flexibility allowing selected patients to be treated with prophylaxis dosing intervals of 7, 10, 14 or 21 days. Patients switching to rIX-FP can reduce their annualised bleeding rate and some have successfully reduced their prophylactic dosing frequency while maintaining low bleeding rates and consistent factor consumption. This may

KARA GARNER
St Luke's Hemophilia Center, Boise, ID, US. Email: kagarner@cableone.net

CHRISTINE GUELCHER
Children's National Hospital, Washington, DC, US

DEBRA POLLARD
Royal Free London NHS Foundation Trust, London, UK

© Shutterstock

With an extended half-life that enables a flexible dosing regimen, rIX-FP can benefit haemophilia B patients by offering effective treatment with reduced treatment burden. Nurse specialists have a complex but key role in ensuring that patients and caregivers are well informed, supported and empowered to choose a treatment approach that works best for them.

ultimately minimise the occurrence of haemophilic arthropathy and improve patient quality of life. Educating patients and caregivers on the sustained use of rIX-FP prophylaxis is essential. The lifelong support and guidance provided by healthcare professionals at haemophilia treatment centres (HTCs) are critical for providing an optimal treatment approach that can increase adherence to treatment. This article reviews the pharmacokinetics, efficacy, and safety of rIX-FP demonstrated in clinical trials and clinical practice, and discusses haemophilia nurses' clinical experiences with rIX-FP in patients in their HTCs.

Keywords: Factor IX, haemophilia B, pharmacokinetics, prophylaxis, rIX-FP, nurse

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (<https://creativecommons.org/licenses/by-nc-nd/3.0/>) which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial, and no modifications or adaptations are made. Copyright is retained by the authors.

Haemophilia is a rare bleeding disorder caused by deficiency or absence of coagulation factors VIII (FVIII, haemophilia A) or IX (FIX, haemophilia B)^[1]. Although haemophilia B is less common than haemophilia A^[2], with approximately 1 in 50,000 individuals being born with haemophilia B, its prevalence is significantly higher than previously thought^[3]. The normal range of FIX in plasma in a healthy individual is 50–150 IU/dL; patients with FIX levels <1 IU/dL are considered to have severe haemophilia B, which results in frequent spontaneous bleeding episodes. Patients with FIX levels of 1–5 IU/dL are considered to have moderate disease, and those with levels of >5–40 IU/dL to have mild haemophilia B^[1]. Most individuals with haemophilia B are men; however, women may have subnormal amounts of clotting factor, and those with factor levels <40% are also considered to have mild haemophilia. Women can be 'carriers' of haemophilia, with approximately one-third of carrier women experiencing low factor levels that may result in abnormal or prolonged bleeding^[4,5]. Those with factor levels of 40–60% of normal that experience abnormal bleeding are known as symptomatic carriers^[1].

In addition to bleeding complications, studies have evaluated quality of life in patients with haemophilia, reporting other comorbidities that increase the burden of disease^[6,7]. These include treatment burden (with prophylaxis treatment requiring regular intravenous infusions to control and prevent bleeding), absenteeism from school or work, anxiety and depression. Research now focuses on these psychological factors, as well as physical and social aspects.

There is currently no cure for haemophilia; however, several therapies with the potential to significantly decrease treatment burden and increase patient quality of life are currently undergoing clinical testing. Non-factor replacement therapies, while not a curative method, provide the potential for reduced treatment burden and a more efficacious option for patients, particularly those with inhibitors. Preliminary data from gene therapy trials show sustained increases in FIX expression to functionally curative levels 26 weeks following a single treatment^[8]. While permanent FIX expression has not yet been established, these results signify the first potential cure for haemophilia B.

The current goals for treating children with haemophilia are early diagnosis and prevention of life-threatening bleeding episodes using prophylaxis. Prophylaxis can reduce the likelihood of spontaneous intracranial haemorrhage, which is associated with

significant morbidity and mortality, and can also decrease consequences associated with recurrent musculoskeletal bleeding^[1]. Recent haemophilia treatment advances include new recombinant FIX (rFIX) products with improved pharmacokinetic (PK) properties that aim to reduce the burden of prophylaxis^[9]. The introduction of extended half-life (EHL) products, designed to have prolonged activity compared with standard half-life (SHL) products, have also enabled less frequent infusions while maintaining high factor levels and protection against spontaneous bleeding^[10].

This review aims to inform healthcare professionals on the real-life management of patients with haemophilia B and discuss how treatments have advanced in recent years with the introduction of rFIX products. In particular, this review focuses on the clinical profile of an EHL rFIX product, rIX-FP (a recombinant fusion protein linking recombinant coagulation FIX with recombinant human albumin (IDELVION®, albutrepenonacog alfa, CSL Behring, PA, USA)^[11]), and how it can be used to optimally treat patients with haemophilia B.

PRESENTATION AND DIAGNOSIS OF HAEMOPHILIA

Haemophilia B has three classifications: severe, moderate or mild, based on the level of plasma FIX in affected individuals^[1]. Severe haemophilia B is associated with spontaneous bleeds that may occur anywhere but are frequently seen in the muscles, soft tissues and major joints^[12,13]. Bleeding that occurs in deep muscles or smaller areas can lead to acute compartment syndrome, causing painful swelling that results in increased pressure within a muscle compartment. This may compress nerves and lead to paraesthesia, and reduce capillary perfusion, eventually leading to tissue necrosis. If left untreated, this can have a significant impact on limb function and may cause nerve palsy and permanent disability^[14]. Recurrent bleeding into joints leads to crippling arthropathy, and bleeding in the intracranial, neck, throat or gastrointestinal tract may be life-threatening or associated with significant morbidity. In addition, bleeding episodes related to trauma may be more frequent in childhood and adolescence than in adulthood due to increased physical activity levels and a lower ability to determine the risk associated with an activity.

Accurate diagnostic testing is essential for the optimal management of haemophilia B and involves a multifaceted approach, including an evaluation of clinical and family history, a physical examination,

and clotting factor testing^[1,15,16]. A bleeding disorder should be considered in a child if they present with any of the following clinical features with or without a family history of haemophilia: prolonged bleeding after circumcision or heel poke, poor wound healing at the umbilical stump, haemarthrosis, haematomas, intracranial bleeding in the absence of major trauma, prolonged oozing, oral or nasal bleeding and/or excessive bruising^[1,15]. Severe haemophilia B is often diagnosed within the first month of life^[15]; however, individuals with no family history may not be diagnosed until 1–2 years, once the child is mobile. It is also important to note that while patients with severe/moderate disease (<5 IU/dL) often present with symptoms at a young age, some, including those with mild disease or carrier women, do not present until later in life or until they undergo invasive procedures such as surgery. If a patient is suspected of having a bleeding disorder, factor activity in the blood should be measured; if FIX levels are <40 IU/dL, genetic mutational analysis can confirm a diagnosis of haemophilia B^[1].

JOINT BLEEDS

Joint bleeds are the leading cause of chronic pain and disability in people with severe haemophilia. As little as one joint bleed per year has been shown to cause irreversible damage and patients with severe haemophilia not receiving prophylaxis may experience joint bleeds as often as two or three times a month^[17,18]. Patients with mild haemophilia may only encounter the problem following trauma. Clinical symptoms are, however, just the tip of the iceberg, and subclinical bleeding can also lead to haemophilic joint arthropathy. The development of haemophilic arthropathy occurs in three stages: acute haemarthrosis, chronic synovitis and degenerative arthritis (Figure 1)^[19,20]. Bleeding into joints causes specific changes in the synovium and cartilage, causing pain and inflammation. When bleeding occurs, enzymes from the swollen synovium destroy the cartilage that covers the ends of the bones over time, resulting in cartilage damage and bone erosion. Recurrent joint bleeds eventually lead to a breakdown of the joint lining which causes long term, irreversible joint damage resulting in a painful arthritic condition known as haemophilic arthropathy^[1,19–21]. The ankles, knees and elbows, known as index joints, are most susceptible to joint bleeds, but bleeds can also occur in the hips, shoulders, fingers and toes^[12]. Joint bleeds rarely occur in the spine, ribs, skull and pelvis because these joints do not have synovial membranes^[20].

Figure 1. Process of subclinical bleeding^[20]

PEDNET (European Paediatric Network for Haemophilia Management) Group and the Canadian Consensus Definition Group define a target joint as a joint in which at least three or four bleeds have occurred within a 3–6-month period^[22,23]. A joint is no longer considered a target joint when there has been no bleeding into it for 12 months.

TREATMENT AND PREVENTION OF BLEEDING EPISODES

Over the past 50 years, the diagnosis and treatment of haemophilia have improved considerably. Currently, treatment for haemophilia B revolves around replacing insufficient FIX in the plasma, using either plasma-derived FIX (pdFIX) or rFIX products^[9]. Patients can treat when required during an active bleed (episodic) or using regular intravenous infusions to prevent bleeding (prophylaxis)^[1,24]. Episodic treatment is used in patients with mild to moderate disease and prophylaxis treatment is recommended in patients with severe disease or moderate disease with a severe bleeding phenotype^[25]. Prophylactic treatment with FIX replacement to prevent bleeding is the standard of care for all patients with severe disease, maintaining FIX activity levels >1 IU/dL at all times. A report by the World Federation of Hemophilia (WFH) suggests maintaining trough levels, e.g., 3–5 IU/dL, to decrease the risk of spontaneous bleeding associated with lower factor levels, as the optimal approach for treating patients with severe haemophilia^[1,26]. More recently, personalising the desired trough level to maintain higher activity levels (e.g., >5 IU/dL) has been favoured to reduce the occurrence of spontaneous or subclinical bleeds^[1,27].

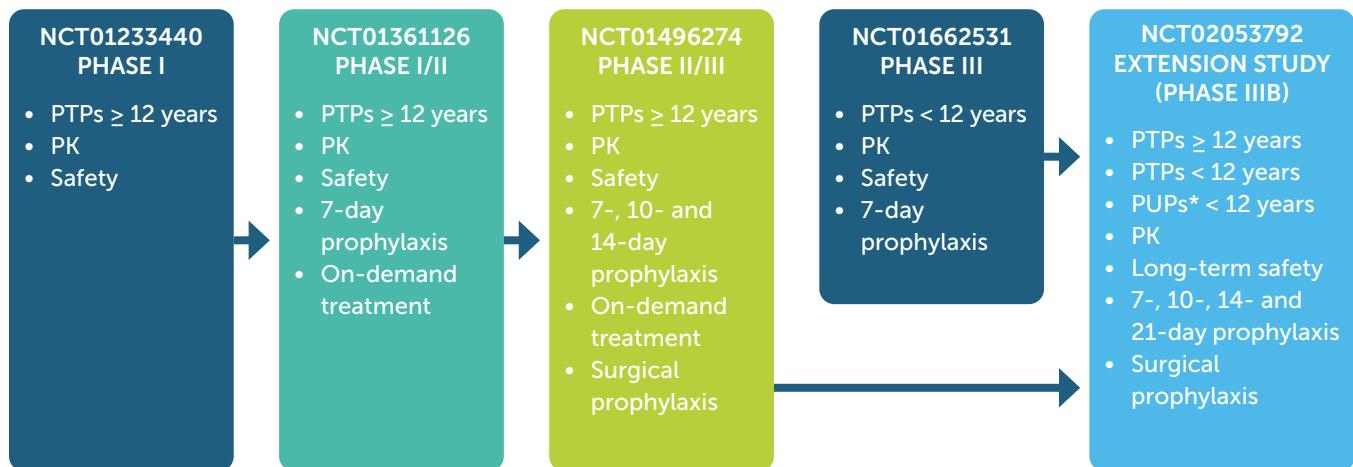
Prior to a period where bleeding is more likely (e.g., before a sports game or dental/invasive surgery), a personalised dose can be administered to obtain peak factor levels (normal levels or above) in order to provide the most protection to the patient.

To achieve and maintain higher trough levels, a number of strategies have been applied to improve the PK and pharmacodynamic (PD) properties of FIX, as well as to prolong the duration of action. These include fusion with recombinant proteins such as albumin (rIX-FP, CSL Behring) or the fragment-crystallizable (Fc) section of immunoglobulin G1 (Fc-fusion; rFIXFc, Sanofi Genzyme), and the attachment of a polyethylene glycol (PEG) molecule (PEGylation; N9-GP, Novo Nordisk)^[28]. As well as the improved PK properties associated with EHL products, product pricing may be a consideration to switching. A recent economic analysis in the US has shown significantly increased direct costs associated with EHL products compared with SHL products^[29]; however, costs and healthcare services vary across regions and countries and this analysis does not include the expected reduced indirect costs associated with more efficacious treatment strategies. Long-term prophylaxis is associated with improved patient outcomes, including reduced pain and joint damage, the major long-term complication of untreated haemophilia, and reduced spontaneous bleeding, and improved overall health and quality of life^[30].

Despite the numerous factor replacement products available, treatment is not without its challenges. Patients treated with an SHL rFIX product, with a half-life of 22 hours, typically require 2–3 infusions per week^[31]. The frequency of injections creates a burden for both patients and caregivers, which has shown to impact long-term adherence^[32]. In the last decade, EHL rFIX products have been developed, with half-lives up to 104 hours^[33]. These have been designed to address the burden of disease by enabling some patients to reduce their infusion frequency while maintaining high FIX activity levels and minimising or even abolishing the occurrence of spontaneous bleeding^[9,27]. Analysis of patient-level real-world data demonstrates that the use of EHL rFIX products can result in lower mean annualised bleeding rates and higher levels of adherence compared with SHL rFIX products^[34].

One of the most burdensome complications of factor replacement therapy is the development of inhibitors; however, unlike haemophilia A, only a small proportion of patients with haemophilia B develop inhibitors to FIX (~3% in haemophilia B vs. ~35% against FVIII in haemophilia A^[35]) that render FIX replacement

therapy ineffective^[2,36]. It is important to note that some patients who develop inhibitors suffer from complications such as allergic reactions, nephrotic syndrome, or anaphylaxis following FIX infusions.


THE USE OF rIX-FP IN CLINICAL TRIALS

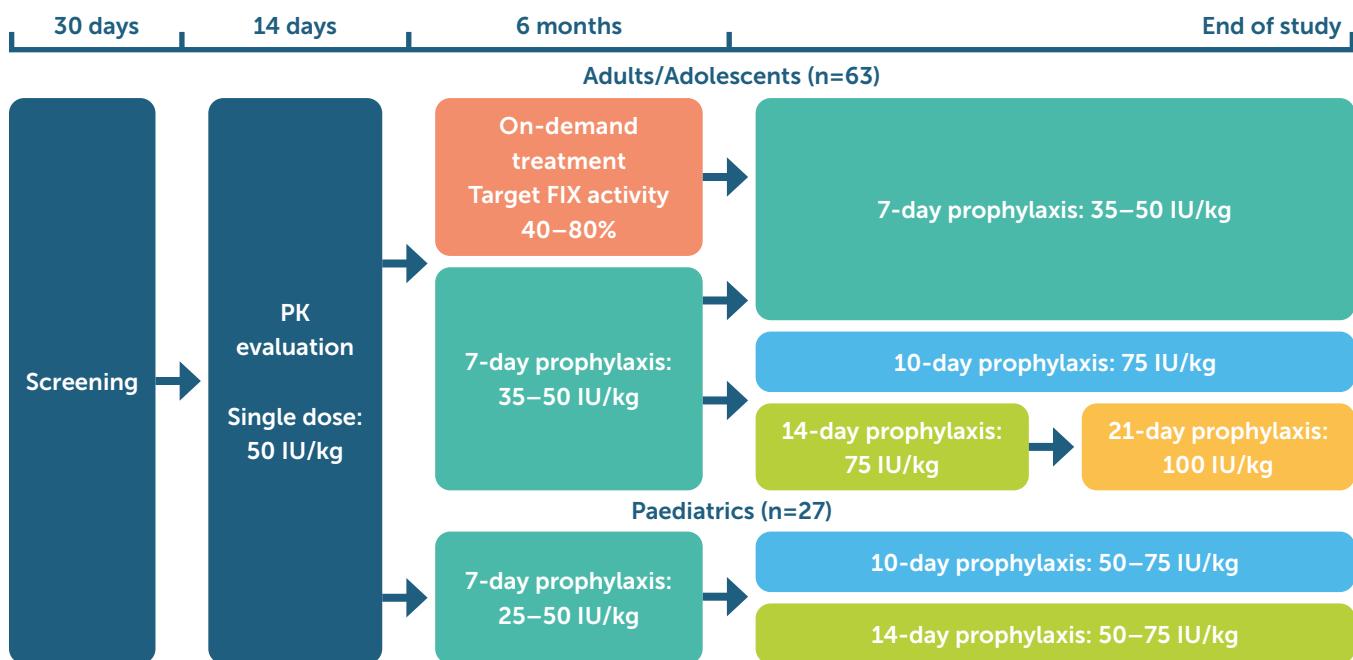
The clinical development programme for rIX-FP (PROLONG-9FP) was initiated in 2010 to establish the PK, efficacy and safety of rIX-FP in paediatric, adolescent and adult patients. The previously treated patient (PTP) studies have completed, and the previously untreated patient (PUP) study has been halted following new guidance that disease registries should be used to retrieve safety data from this population (Figure 2)^[37]. The clinical programme consisted of a phase I dose-finding study^[38], phase I/II study in adults and adolescents^[39], and three phase III trials. PK data from the early phase studies demonstrated that rIX-FP has an extended circulating half-life, increased area under the FIX activity time curve, lower clearance and an increased incremental recovery compared with standard-acting rFIX (BeneFIX®, nonacog alfa, Pfizer) (Table 1)^[11,31]. In the phase III study, adult and adolescent patients (≥12 years) received prophylaxis with 35–50 IU/kg rIX-FP every 7 days or 50–75 IU/kg every 10 or 14 days; paediatric patients (<12 years) received prophylaxis with 35–50 IU/kg rIX-FP every 7 days (Figure 3). Additionally, patients receiving episodic treatment of bleeding episodes for 26 weeks could then be switched to a 7-day prophylaxis regimen. The detailed phase III study design and results of the adult/adolescent^[40] and paediatric^[41] studies have been described previously; briefly, rIX-FP was shown to have excellent efficacy in the control of spontaneous bleeding episodes and high sustained trough levels in patients of all ages. These findings demonstrate the successful transition of the majority of patients with severe haemophilia to a mild haemophilia phenotype (Table 2)^[40,41].

Following this study, patients could enrol in the phase IIIb extension study and further extend their dosing interval if they were well controlled on their current regimen for at least 6 months^[42,43]. In addition, 21-day dosing intervals were trialled, whereby adult patients ≥18 years could extend their dosing interval to every 21 days at a dose of 100 IU/kg, if they were well controlled on a 14-day regimen for at least 6 months (Figure 3)^[42]. Similarly, paediatric patients could extend their dosing interval to every 14 days at a dose of 50–75 IU/kg, if they were well controlled on a 7-day regimen. The results from this study showed low bleeding rates on all regimens, demonstrating that

Figure 2. PROLONG-9FP clinical trial programme^[37]

Figure updated from Santagostino et al., 2016

PK: pharmacokinetics


PTP: previously treated patient

PUP: previously untreated patient

rIX-FP: recombinant factor IX albumin fusion protein

*PUPs study was halted following guidance that safety data in this population should be gained from disease registries

Figure 3. rIX-FP phase III/IIIb extension study treatment programme in adult/adolescent and paediatric patients

PK: pharmacokinetics

rIX-FP: recombinant factor IX albumin fusion protein

*Only patients ≥18 years were able to switch to the 21-day regimen if they were well controlled on the 14-day regimen for at least 6 months

selected patients can be treated with alternative dosing regimens, and no safety concerns were reported^[40–43]. Overall, this dosing flexibility enables patients to benefit from a combination of advantages, such as reduced injection frequency and FIX consumption while maintaining low bleeding rates. This may minimise the burden of treatment and increase patient empowerment and independence from physicians,

allowing patients to be more in control of their treatment through self-administration and home management^[40–43].

In July 2020, the European Medicines Agency (EMA) approved the new Summary of Product Characteristics (SmPC) for IDELVION, which comprises new, extended dosing options, including the possibility of further extension of the treatment interval up to 21-day

Table 1. Pharmacokinetics of rIX-FP compared with rFIX reported in phase III studies^[11,31]

	rIX-FP		rFIX	
	50 IU/kg (N=46) ^[40]	75 IU/kg (N=8) ^[33]	50 IU/kg (N=11) ^[31]	75 IU/kg (N=17) ^[58]
Half-life (hours)	101.7	104	18.1	22.5
Clearance (mL/h/kg)	0.769	0.84	0.84	7.5*
AUC ∞ (IU \cdot h/dL)	7176	9345	548	1070
IR (IU/dL)(IU/kg)	1.27	1.08	0.84	0.80

AUC: area under the curve

IR: incremental recovery

FP: fusion protein

rFIX: recombinant FIX

*Parameter from initial pharmacokinetic visit (other values quoted from final visit)

dosing for appropriate adult patients over 18 years. It is essential to note that the 21-day regimen for adults is not approved in the US and the 14-day regimen for paediatrics is currently not approved for use in the EU or US.

This clinical trial programme has demonstrated that rIX-FP effectively replaces the missing coagulation FIX needed for haemostasis, and some patients can successfully extend their dosing interval while maintaining high FIX activity levels^[44]. rIX-FP has also been shown to be well tolerated, effectively maintaining haemostasis during and after surgery^[45], and paediatric patients treated with rIX-FP prophylaxis have demonstrated improved health-related quality of life^[46].

USING rIX-FP IN ROUTINE CLINICAL PRACTICE

The real-world utilisation of rIX-FP in patients with haemophilia B in Germany^[47] and in Italy, Belgium and the UK^[48] has been reported, demonstrating similar outcomes to the clinical trial experience. These retrospective analyses of patient records found that patients successfully switched from prophylaxis with their prior FIX product to rIX-FP prophylaxis. In some cases, patients were able to reduce their dosing frequency, while maintaining similar bleed protection before and after switching product. In addition, mean factor consumption reduced in patients who switched to rIX-FP from their prior SHL FIX product^[47,48].

COMPREHENSIVE CARE APPROACH

The comprehensive care team within a haemophilia treatment centre (HTC) is made up of numerous healthcare practitioners, including physicians, nurses, social workers and physiotherapists^[1].

The care provided by nurses is complex. For a patient with severe haemophilia, the primary goal is to prevent pain and discomfort by encouraging patients/caregivers to be compliant with their prophylaxis regimen in order to maintain FIX activity

levels >1 IU/dL. Educating patients/caregivers on the role of prophylaxis infusions in bleed prevention and the signs and symptoms of bleeding, and coordinating home infusion, are therefore vital in maintaining optimal physical health, mobility and activity in the patient.

Reducing the burden of disease is also a crucial factor in patient care and finding the optimal treatment throughout the patient's life is essential. To accomplish this, nurses play a crucial role in product choice, incorporating an understanding of therapeutic products and modes of delivery, as well as practical aspects of administration, calculating appropriate doses, and determining the appropriate prophylaxis regimen, ultimately providing personalised care.

Finding the suitable therapeutic product for a patient is complex and often involves a shared decision-making process between HTC staff and the patient/caregiver, taking into consideration the site of the bleed, age of the patient, previous exposure to plasma-derived factors, cost, efficacy, and safety of the products^[49]. It is also essential to maintain regular follow-up appointments to ensure the selected therapy's effectiveness and alter the treatment choice, if necessary, in the ever-changing landscape of haemophilia therapy.

The introduction of home therapy has empowered patients and their families to manage haemophilia more independently; however, self-management is demanding and complex. Telephone or video appointments, as well as web-based and mobile apps and social media interventions, have provided a huge advantage for patients and caregivers to manage haemophilia outside of the clinic^[50]. This network of support has become particularly important with the changes in clinical practice that have resulted from the COVID-19 pandemic, which has included disruption to patient management through the temporary closure of hospitals to non-COVID-19 patients^[51].

Education for all patients and caregivers is important and typically provided by nurses during

follow up appointments, both in clinic and remotely, as well as through formal and informal training. Self-administration programmes can be valuable resources for patients learning how to manage their treatment at home (or outside the HTC) and, importantly, during emergencies. For example, home management of young children with haemophilia, who may be more prone to accidents due to their physical activity levels, is crucial in reducing their impact. Similarly, providing appropriate care for the elderly, who are likely to have received poorer levels of care in early life due to a lack of accessibility and availability of efficacious products, is essential as many among this patient group will have complications related to their bleeding disorder, in addition to the risk of age-related complications seen in the general population. Close coordination between specialties is key to optimising the care of the older haemophilia population as they face additional challenges, such as chronic joint arthropathy which provokes falls and fractures, and complications related to HIV and hepatitis C infection which greatly affect the incidence of cancer and liver disease. Elderly patients with haemophilia may require more assistance to retain their physical and emotional independence; however, beyond the comprehensive managed care plan, there is still a lack of evidence on which to base guidelines on how to treat the older haemophilia population and age-related comorbidities.

PROVIDING A NURSE PRACTITIONER PERSPECTIVE ON THE USE OF rIX-FP IN CLINICAL PRACTICE

The role of each haemophilia nurse practitioner is vital in the management of home-based treatment. Nurses remain the primary point of contact for clinical advice for patients and caregivers, and the importance of maintaining a strong therapeutic relationship cannot be understated^[52]. The effect of integrated, comprehensive care on patient-important outcomes in this complex disease have previously been reported, resulting in published guidelines for nurse practitioners to provide the necessary treatments directly to patients in their homes^[52,53].

As haemophilia is a lifelong condition, nurse practitioners should be aware of particular challenges that may arise at different life stages, including complications that may result from both treatment and the condition itself. The most critical barrier to treatment is awareness, involving lack of education or retention of information among patients regarding the signs and symptoms of a bleed, as well as importance of early therapy^[54]. It is also common for parents/caregivers

of school-age children to exhibit inconvenience and scheduling barriers to prophylaxis treatment. As newer products become available, the discussion between healthcare professionals and the patient and/or their caregiver are essential to providing an individualised treatment programme to ensure successful switching between products. Although experience varies between centres, familiarity with a medication and the perception of success in clinical trials are important considerations when deciding on a product.

Patients may have a fear of initiating prophylaxis infusions or changing product, particularly if they feel their current treatment is sufficient^[55]. Similarly, patients report not wanting to initiate prophylaxis due to fear of intravenous infusions, poor venous access and the lifelong commitment to treatment, all of which can lead to delays in treatment and impact on compliance, overall treatment success and patient quality of life^[56]. Distance to the HTC and access to replacement therapy can also delay treatment for some patients^[56,57]. In addition, some patients experience financial barriers related to the cost of therapy and the accessibility of a product influenced by insurance and out-of-pocket expenses^[56].

Identifying and managing individual barriers could result in earlier treatment and the prevention of long-term joint damage in paediatric patients, which may also lead to better overall health and quality of life in patients with haemophilia. Importantly, the quality of the relationship between healthcare professionals and the patient and the time spent with specialist staff are associated with a greater understanding of treatment and adherence to prophylaxis.

A NURSE PRACTITIONER PERSPECTIVE

In our experience, the primary outcome to achieve in patients with haemophilia is a reduction in or eradication of bleeds. Rather than focusing on trough levels, patients tend to appreciate fewer bleeds and a reduction in the frequency of infusions. In the Royal Free London NHS Foundation Trust, UK, the treatment plans for most patients with severe haemophilia B include a once-weekly dosing regimen. This has been highly welcomed by the patient group, who had all previously received infusions 2–3 times per week. Adherence is multi factorial and reducing dosing frequency may have some effect on this issue; however, there is no substantial evidence to support this as yet.

Case study 1

At St Luke's Hemophilia Center (Boise, ID, US), the son of a known carrier mother was evaluated for

haemophilia at birth. The newborn's FIX activity level was 3 IU/dL; he was diagnosed with moderate haemophilia B, referred to a haematology specialist and assigned to a nurse practitioner. The current recommendation for treatment of a child with haemophilia is to not expose the child to factor replacement therapy until medically necessary, but that once treatment is started it should aim to achieve a target trough level of above 1 IU/dL. With a FIX level of 3 IU/dL at birth, the decision was made for episodic rFIX administration if the child experienced a bleeding episode. Later, he was diagnosed with bilateral hearing loss, proteinuria of unknown cause and hyperopia.

The child had few bleeding episodes during his younger years, but at 11 years of age his bleeding episodes began to increase. In particular, he experienced more trauma-related lower extremity musculoskeletal bleeds resulting from increased physical activity. These were treated as needed by his father at home using an rFIX product (BeneFIX®, nonacog alfa, Pfizer). His target joint is now the right ankle and he has developed haemarthrosis. Part of the treatment plan included a referral to an orthotist to assess the stability of his ankle and recommendations for physical therapy to protect his ankles during sport. Despite the need for prophylaxis, the parents had concerns about the best treatment for their child. Both were reluctant to start prophylaxis, with reasons including the mother's lack of confidence at administering intravenous infusions to her child and concerns about the over-use of medication. However, due to the increase in bleeding episodes and continued joint damage, the parents decided to discuss changing the treatment plan to include prophylaxis with their nurse practitioner at the HTC. A decision was not reached during the clinic visit as the father wanted to research the products and companies before choosing a therapy. In addition, PK assessments are required at the HTC when switching therapy treatments and the family had travel plans and could not commit to the lab testing requirements, causing a delay in starting prophylaxis treatment.

Several months later, the family decided to initiate weekly prophylaxis with rIX-FP, understanding that trough levels, and preferably PK assessments, would need to be measured during the switching of products. The family returned to the HTC one week after switching to rIX-FP to measure the trough level. At this point, trough levels were 28% and the nurse practitioner suggested that, with such high levels, infusions should be withheld for 7 days. The family agreed and returned to the clinic 10 days post infusion; the FIX trough level

measured 16% during this visit. The nurse practitioner explained to the family that this level was more than sufficient, and the family was asked to return to the clinic to have the trough level assessed after 14 days. The 14-day post-infusion trough level was 4%. Based on this, the nurse practitioner explained to the family that their child could safely infuse rIX-FP every 14 days. Ultimately, the family decided to maintain weekly infusions as they preferred to sustain high factor levels during the time that their son's physical activity was high, with the option to infuse rIX-FP every 14 days when he was not actively participating in sports. The patient has only had one trauma-related bleed in the last two years after starting treatment with rIX-FP. He continues to be active and has not had problems with his ankle.

This case is representative of many of the patients treated at this HTC. Parents/caregivers are hesitant to change from episodic therapy to prophylaxis therapy and many are reluctant to switch products. This family had both hesitations, even though they were aware of the damage caused by bleeding episodes into the joints. The strategy used with this family was to develop trust and a sense of empowerment that they were going to make the ultimate decision. The mother needed emotional support to help the process that her child was going to receive infusions regularly and the long-term benefits of this decision.

Case study 2

At the Children's National Hospital (Washington, DC, US), a male patient was diagnosed with severe haemophilia B at birth due to a positive family history (maternal uncle with haemophilia). The patient started weekly prophylaxis with an SHL rFIX product (BeneFIX®, nonacog alfa, Pfizer) when he started school. His father learned how to infuse at home.

At 7 years of age the patient's prophylaxis was increased to twice weekly when he experienced breakthrough bleeding. His infusion schedule was also adjusted as he became more physically active and participated in sports, to ensure adequate cover. However, he experienced bleeds to his left and right ankles, and a bleed to his right knee, which led to decreased ankle flexibility and postural deviations. The patient was resistant to learn self-infusion as he got older, and his parents were concerned that his peripheral access might be compromised if he was unsuccessful. The possibility of switching to an EHL product was discussed in clinic, but the family had concerns about whether weekly prophylaxis using EHL factor would provide adequate coverage, and also did

not want to switch product until the patient was ready to consider self-infusion.

Despite their initial concerns around EHL factor, decreasing the frequency of infusions became more appealing as the family transitioned from infusing their son to having him self-administer his treatment by the time he was 12 years of age. They decided to switch to rIX-FP prophylaxis in 2017. To make it easier for their son to remember his infusion day, they elected to dose factor every 7 days. With weekly trough levels of 5–8% on the current regimen, the patient has had no breakthrough bleeding and is successfully self infusing with excellent adherence.

CONCLUSIONS

Patients and caregivers need to be informed about the use of rIX-FP and the discussion on the benefits of prophylaxis when collectively deciding a treatment approach with their healthcare team. rIX-FP is well tolerated and widely used, demonstrating favourable clinical outcomes for adults and paediatrics with haemophilia B in both clinical trials and in routine clinical practice. Patients are treated optimally on a weekly prophylaxis regimen with rIX-FP, and some are able to extend their dosing intervals to every 10, 14 or 21 days while maintaining low bleeding rates, which may lead to improved adherence to prophylaxis infusions.

Real-life experiences have shown that the relationship between a nurse and their patients is complex but crucial to the patient's education and overall quality of life. While determining the optimal treatment approach may be complicated, understanding the benefits of therapeutic products, such as rIX-FP, are essential for healthcare practitioners considering switching their patients' treatment to rIX-FP.

ACKNOWLEDGEMENTS

Conflicts of interest

KG: Speaker/consultant for Takeda, Bayer; advisory boards for Genentech, UniQure and Pfizer.

CG: Advisory boards for Pfizer, CSL Behring, UniQure, Genentech, Octapharma, Novo Nordisk and Takeda.

DP: Paid speaker/consultant for BioMarin, CSL Behring, Takeda, Sobi, NovoNordisk, UniQure and Roche-Chugai.

Funding

The authors contributed equally to the development of this review manuscript. Medical writing assistance was provided by Meridian HealthComms Ltd in accordance with good publication practice (GPP3), funded by CSL Behring.

Consent

This article does not contain any studies involving human participants or animals performed by any of the authors.

Informed consent has been obtained from the parents of the individuals reported in the case studies described in this article.

ORCID

Kara Garner <https://orcid.org/0000-0002-4529-3471>

Christine Guelcher <https://orcid.org/0000-0001-9226-2347>

Debra Pollard <https://orcid.org/0000-0002-7797-3500>

REFERENCES

1. Srivastava A, Santagostino E, Dougall A, et al.; WFH Guidelines for the Management of Hemophilia panellists and co-authors. WFH Guidelines for the Management of Hemophilia, 3rd edition. *Haemophilia* 2020; 26 Suppl 6: 1-158. doi: 10.1111/hae.14046.
2. World Federation of Hemophilia. Report on the Annual Global Survey 2017. October 2018. Available from: <http://www1.wfh.org/publications/files/pdf-1714.pdf> (accessed July 2020).
3. Iorio A, Stonebraker JS, Chambost H, et al. Establishing the prevalence and prevalence at birth of hemophilia in males: a meta-analytic approach using national registries. *Ann Intern Med* 2019; 171(8): 540-546. doi: 10.7326/M19-1208.
4. Hemophilia Federation of America. Poorly understood: women and bleeding disorders. 9 May 2013. Available from: <https://www.hemophiliafed.org/news-stories/2013/05/poorly-understood-women-and-bleeding-disorders/> (accessed August 2020).
5. Plug I, Mauser-Bunschoten EP, Bröcker-Vriendt AHJT, et al. Bleeding in carriers of hemophilia. *Blood* 2006; 108(1): 52-6. doi: 10.1182/blood-2005-09-3879.
6. Bullinger M, von Mackensen S. Quality of life assessment in haemophilia. *Haemophilia* 2004; 10(suppl 1): 9-16. doi: 10.1111/j.1355-0691.2004.00874.x.
7. Buckner TW, Witkop M, Guelcher C, et al. Impact of hemophilia B on quality of life in affected men, women, and caregivers – Assessment of patient-reported outcomes in the B-HERO-S study. *Eur J Haematol* 2018; 100(6): 592-602. doi: 10.1111/ejh.13055.
8. Von Drygalski A, Giermasz A, Castaman G, et al. Etranacogene dezaparvovec (AMT-061 phase 2b): normal/near normal FIX activity and bleed cessation in hemophilia B. *Blood Adv* 2019; 3(21): 3241-3247. doi: 10.1182/bloodadvances.2019000811.
9. Escobar M, Santagostino E, Mancuso ME, et al. Switching patients in the age of long-acting recombinant products? *Expert Rev Hematol* 2019; 12(sup1): 1-13. doi: 10.1080/17474086.2018.1564032.
10. Ar MC, Balkan C, Kavakli K. Extended half-life coagulation factors: a new era in the management of hemophilia patients. *Turk J Haematol* 2019; 36(3): 141-154. doi: 10.4274/tjh.galenos.2019.2018.0393.
11. European Medicines Agency. IDELVION. Summary of product characteristics. 2016; Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/003955/WC500207380.pdf (accessed July 2020).

12. Oldenburg J. Optimal treatment strategies for hemophilia: achievements and limitations of current prophylactic regimens. *Blood* 2015; 125(13): 2038-44. doi: 10.1182/blood-2015-01-528414.
13. Simpson ML, Valentino LA. Management of joint bleeding in hemophilia. *Expert Rev Hematol* 2012; 5(4): 459-68. doi: 10.1586/ehm.12.27.
14. Saraf SK, Singh OP, Singh VP. Peripheral nerve complications in hemophilia. *J Assoc Physicians India* 2003; 51: 167-9.
15. Kulkarni R, Presley RJ, Lusher JM, et al. Complications of haemophilia in babies (first two years of life): a report from the Centers for Disease Control and Prevention Universal Data Collection System. *Haemophilia* 2017; 23(2): 207-214. doi: 10.1111/hae.13081.
16. Swystun LL, James P. Using genetic diagnostics in hemophilia and von Willebrand disease. *Hematology Am Soc Hematol Educ Program* 2015; 2015: 152-159. doi: 10.1182/asheducation-2015.1.152.
17. van Vulpen LFD, Holstein K, Martinoli C. Joint disease in haemophilia: Pathophysiology, pain and imaging. *Haemophilia* 2018; 24 Suppl 6: 44-49. doi: 10.1111/hae.13449.
18. Saulyte Trakymiene S, Steen Carlsson K. On-demand treatment in persons with severe haemophilia. *Eur J Haematol Suppl* 2014; 76: 39-47. doi: 10.1111/ehj.12373.
19. Gringeri A, Ewenstein B, Reininger A. The burden of bleeding in haemophilia: is one bleed too many? *Haemophilia* 2014; 20(4): 459-63. doi: 10.1111/hae.12375.
20. Knobe K, Berntorp E. Haemophilia and joint disease: pathophysiology, evaluation, and management. *J Comorb* 2011; 1: 51-59. doi: 10.15256/joc.2011.1.2.
21. Blanchette VS, Key NS, Ljung LR, et al. Definitions in hemophilia: communication from the SSC of the ISTH. *J Thromb Haemost* 2014; 12(11): 1935-9. doi: 10.1111/jth.12672.
22. Donadel-Claeyssens S, European Paediatric Network for Haemophilia Management. Current co-ordinated activities of the PEDNET (European Paediatric Network for Haemophilia Management). *Haemophilia* 2006; 12(2): 124-7. doi: 10.1111/j.1365-2516.2006.01202.x.
23. Ota S, McL المت M, Carcao MD, et al. Definitions for haemophilia prophylaxis and its outcomes: the Canadian consensus study. *Haemophilia* 2007; 13(1): 12-20. doi: 10.1111/j.1365-2516.2006.01409.x.
24. Medical and Scientific Advisory Council (MASAC). MASAC Recommendation Concerning Prophylaxis (Regular Administration of Clotting Factor Concentrate to Prevent Bleeding). MASAC Document 241. National Hemophilia Foundation, 2016. Available from: <https://www.hemophilia.org/sites/default/files/document/files/241prophylaxis.pdf> (Accessed August 2020).
25. Manco-Johnson MJ, Soucie JM, Gill JC; Joint Outcomes Committee of the Universal Data Collection, US Hemophilia Treatment Center Network. Prophylaxis usage, bleeding rates, and joint outcomes of hemophilia, 1999 to 2010: a surveillance project. *Blood* 2017; 129(17): 2368-2374. doi: 10.1182/blood-2016-02-683169.
26. Skinner MW. WFH: closing the global gap--achieving optimal care. *Haemophilia* 2012; 18 Suppl 4: 1-12. doi: 10.1111/j.1365-2516.2012.02822.x.
27. Castaman G. The benefits of prophylaxis in patients with hemophilia B. *Expert Rev Hematol* 2018; 11(8): 673-683. doi: 10.1080/17474086.2018.1489719.
28. Lambert T, Benson G, Dolan G, et al. Practical aspects of extended half-life products for the treatment of haemophilia. *Ther Adv Hematol* 2018; 9(9): 295-308. doi: 10.1177/2040620718796429
29. Burke T, Asghar S, O'Hara J, Sawyer EK, Li N. Clinical, humanistic, and economic burden of severe hemophilia B in the United States: Results from the CHESS US and CHESS US+ population surveys. *Orphanet J Rare Dis* 2021; 16(1): 143. doi: 10.1186/s13023-021-01774-9.
30. Manco-Johnson MJ, Abshire TC, Shapiro AD, et al. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. *N Engl J Med* 2007; 357(6): 535-44. doi: 10.1056/NEJMoa067659.
31. European Medicines Agency. BeneFIX. Summary of product characteristics. 2019; Available from: https://www.ema.europa.eu/en/documents/product-information/benefix-epar-product-information_en.pdf (accessed August 2020).
32. Hacker MR, Geraghty S, Manco-Johnson M. Barriers to compliance with prophylaxis therapy in haemophilia. *Haemophilia* 2001; 7(4): 392-6. doi: 10.1046/j.1365-2516.2001.00534.x.
33. Food and Drug Administration (FDA). IDELVION. Highlights of prescribing information. 2019. Available from: <https://labeling.cslbehring.com/PI/US/Idelvion/EN/Idelvion-Prescribing-Information.pdf> (accessed August 2020).
34. Chhabra A, Spurden D, Fogarty PF, et al. Real-world outcomes associated with standard half-life and extended half-life factor replacement products for treatment of haemophilia A and B. *Blood Coagul Fibrinolysis* 2020; 31(3): 186-192. doi: 10.1097/MBC.0000000000000885.
35. Meeks SL, Batsuli G. Hemophilia and inhibitors: current treatment options and potential new therapeutic approaches. *Hematology Am Soc Hematol Educ Program* 2016; 2016(1): 657-662. doi: 10.1182/asheducation-2016.1.657.
36. Hemophilia & Rare Bleeding Disorders. What is Congenital Hemophilia? Novo Nordisk, 2016. Available from: <https://www.rarebleedingdisorders.com/bleeding-disorders/congenital-hemophilia.html> (accessed August 2020).
37. Santagostino E. Transforming the treatment for hemophilia B patients: update on the clinical development of recombinant fusion protein linking recombinant coagulation factor IX with recombinant albumin (rIX-FP). *Thromb Res* 2016; 141 Suppl 3: S5-8. doi: 10.1016/S0049-3848(16)30415-7.
38. Santagostino E, Negrer C, Klamroth R, et al. Safety and pharmacokinetics of a novel recombinant fusion protein linking coagulation factor IX with albumin (rIX-FP) in hemophilia B patients. *Blood* 2012; 120(12): 2405-11. doi: 10.1182/blood-2012-05-429688.
39. Martinowitz U, Lissitchkov T, Lubetsky A, et al. Results of a phase I/II open-label, safety and efficacy trial of coagulation factor IX (recombinant), albumin fusion protein in haemophilia B patients. *Haemophilia* 2015; 21(6): 784-90. doi: 10.1111/hae.12721.
40. Santagostino E, Martinowitz U, Lissitchkov T, et al. Long-acting recombinant coagulation factor IX albumin fusion protein (rIX-FP) in hemophilia B: results of a phase 3 trial. *Blood* 2016; 127(14): 1761-9. doi: 10.1182/blood-2015-09-669234.
41. Kenet G, Chambost H, Male C, et al. Long-acting recombinant fusion protein linking coagulation factor IX with albumin (rIX-FP) in children. Results of a phase 3 trial. *Thromb Haemost* 2016; 116(4): 659-68. doi: 10.1160/TH16-03-0179.

42. Mancuso ME, Lubetsky A, Pan-Petesch B, et al. Long-term safety and efficacy of rIX-FP prophylaxis with extended dosing intervals up to 21 days in adults/adolescents with hemophilia B. *J Thromb Haemost* 2020; 18(5): 1065-1074. doi: 10.1111/jth.14778.

43. Kenet G, Chambost H, Male C, et al. Long-term safety and efficacy of recombinant coagulation factor IX albumin fusion protein (rIX-FP) in previously treated pediatric patients with hemophilia B: results from a phase 3b extension study. *Thromb Haemost* 2020; 120(4): 599-606. doi: 10.1055/s-0040-1705116.

44. Gill JC, Roberts J, Li Y, Castaman G. Sustained high trough factor IX activity levels with continued use of rIX-FP in adult and paediatric patients with haemophilia B. *Haemophilia* 2019; 25(3): e219-e222. doi: 10.1111/hae.13735.

45. Negrer C, Abdul Karim F, Lepatan LM, et al. Efficacy and safety of long-acting recombinant fusion protein linking factor IX with albumin in haemophilia B patients undergoing surgery. *Haemophilia* 2016; 22(4): e259-66. doi: 10.1111/hae.12972.

46. von Mackensen S, Shah J, Seifert W, Kenet G. Health-related quality of life in paediatric haemophilia B patients treated with rIX-FP. *Haemophilia* 2019; 25(1): 45-53. doi: 10.1111/hae.13624.

47. Oldenburg J, Yan S, Maro G, Krishnarajah G, Tiede A. Assessing bleeding rates, related clinical impact and factor utilization in German hemophilia B patients treated with extended half-life rIX-FP compared to prior drug therapy. *Curr Med Res Opin* 2019; 36(1): 9-15. doi: 10.1080/03007995.2019.1662675.

48. Marino R, Maro G, Sommerer P, Malcangi G. PB0691. Real-world utilization and bleed rates in patients with hemophilia B who switched to recombinant factor IX fusion protein (rIX-FP) in Italy, Belgium and the United Kingdom. *Res Pract Thromb Haemost* 2019; 3(S1): 323. doi: 10.1002/rth2.12229.

49. Gue D, Squire S, McIntosh K, et al. Joining the patient on the path to customized prophylaxis: one hemophilia team explores the tools of engagement. *J Multidiscip Healthc* 2015; 8: 527-34. doi: 10.2147/JMDH.S93579.

50. Kulkarni R. Use of telehealth in the delivery of comprehensive care for patients with haemophilia and other inherited bleeding disorders. *Haemophilia* 2018; 24(1): 33-42. doi: 10.1111/hae.13364.

51. O'Donovan M, Buckley C, Benson J, et al. Telehealth for delivery of haemophilia comprehensive care during the COVID-19 pandemic. *Haemophilia* 2020; 26(6): 984-990. doi: 10.1111/hae.14156.

52. Pai M, Key NS, Skinner M, et al. NHF-McMaster Guideline on Care Models for Haemophilia Management. *Haemophilia* 2016; 22(S3): 6-16. doi: 10.1111/hae.13008.

53. National Hemophilia Foundation. Nurses' Guide to Bleeding Disorders. 2020; Available from: <https://www.hemophilia.org/Researchers-Healthcare-Providers/NHF-Provider-Working-Groups/Nursing-Working-Group/Resources-for-Nurses/Nurses-Guide-to-Bleeding-Disorders> (accessed August 2020).

54. Saxena K. Barriers and perceived limitations to early treatment of hemophilia. *J Blood Med* 2013; 4: 49-56. doi: 10.2147/JBM.S43734.

55. von Mackensen S, Kalnins W, Krucker J, et al. Haemophilia patients' unmet needs and their expectations of the new extended half-life factor concentrates. *Haemophilia* 2017; 23(4): 566-574. doi: 10.1111/hae.13221.

56. Thornburg CD, Duncan NA. Treatment adherence in hemophilia. *Patient Prefer Adherence* 2017; 11: 1677-1686. doi: 10.2147/PPA.S139851.

57. Wiley RE, Khouri CP, Snihur AWK, et al. From the voices of people with haemophilia A and their caregivers: Challenges with current treatment, their impact on quality of life and desired improvements in future therapies. *Haemophilia* 2019; 25(3): 433-440. doi: 10.1111/hae.13754.

58. Korth-Bradley JM, Rendo P, Smith L, Altisent C. Pharmacokinetics, efficacy, and safety of nonacog alfa in previously treated patients with moderately severe to severe hemophilia B. *Clin Ther* 2016; 38(4): 936-44. doi: 10.1016/j.clinthera.2016.02.015.

59. Valentino LA, Rusen L, Elezovic I, Smith LM, Korth-Bradley JM, Rendo P. Multicentre, randomized, open-label study of on-demand treatment with two prophylaxis regimens of recombinant coagulation factor IX in haemophilia B subjects. *Haemophilia* 2014; 20(3): 398-406. doi: 10.1111/hae.12344.

60. Kavakli K, Smith L, Kuliczkowski K, et al. Once-weekly prophylactic treatment vs. on-demand treatment with nonacog alfa in patients with moderately severe to severe haemophilia B. *Haemophilia* 2016; 22(3): 381-8. doi: 10.1111/hae.12878.

61. Monahan PE, Liesner R, Sullivan ST, Ramirez ME, Kelly P, Roth DA. Safety and efficacy of investigator-prescribed BeneFIX prophylaxis in children less than 6 years of age with severe haemophilia B. *Haemophilia* 2010; 16(3): 460-8. doi: 10.1111/j.1365-2516.2009.02162.x.

HOW TO CITE THIS ARTICLE:

Garner K, Guelcher C, Pollard D. The use of rIX-FP in patients with haemophilia B: A nurses' perspective. *J Haem Pract* 2021; 8(1): 86-97. <https://doi.org/10.17225/jhp00180>.

Table 2. A comparison between dosing intervals, ABR and annual infusions in adult/adolescent and paediatric patients

	rFIX			rIX-FP		
	ADULT/ ADOLESCENTS ^[59]	ADULT/ ADOLESCENTS ^[60]	PAEDIATRICS ^[61]	ADULT/ADOLESCENTS ^[42]		
Dosing intervals* (days)	3.5	7	3.5–7	7	10	14
Number of patients (n)	44	25	22	17	41	21 [†]
Dose (IU/kg)	50	100 [§]	64.6	35–50	50–75	100
Annual infusions (n) [†]	104	52	52–104	52	26	17
ABR (median)	2.6	2.0	3.7	1.33	0.80	0.92
AsBR (median)	1.7	1.0	0.58	0.00	0.28	0.37
Steady-state trough	3.57 (3.11)	2.0 (N/A)	N/A	22.0 (8.4)	19.8 (16.0)	13.6 (6.4)
FIX (%) mean (SD)					7.6 (2.3)	15.1 (4.1)
ABR: annualised bleeding rate	AsBR: annualised spontaneous bleeding rate			SD: standard deviation		
rFIX: factor IX	N/A: not available					

* All patients treated with rIX-FP started prophylaxis on a 7-day regimen. rIX-FP extended dosing regimens in adults (10, 14 or 21 days) and paediatrics (10 or 14 days) were for selected eligible patients who were well controlled on their prior regimen for at least 6 months and switched at the investigators' discretion.

† Estimated, assuming 100% compliance with regimen and omitting episodic treatment for bleeds.

§ Based on 50 IU/kg twice weekly; FIX trough levels were not assessed as the prophylactic dosing regimens in this study were not designed to maintain FIX levels at or above 1%.

[†] In adult patients ≥ 18 years who were well-controlled on the 14-day regimen for at least 6 months prior to switching treatment.